Extensions 1→N→G→Q→1 with N=C2 and Q=C232Q8

Direct product G=N×Q with N=C2 and Q=C232Q8
dρLabelID
C2×C232Q832C2xC2^3:2Q8128,2188


Non-split extensions G=N.Q with N=C2 and Q=C232Q8
extensionφ:Q→Aut NdρLabelID
C2.1(C232Q8) = C24.91D4central extension (φ=1)32C2.1(C2^3:2Q8)128,1047
C2.2(C232Q8) = C23.211C24central extension (φ=1)64C2.2(C2^3:2Q8)128,1061
C2.3(C232Q8) = C244Q8central stem extension (φ=1)32C2.3(C2^3:2Q8)128,1169
C2.4(C232Q8) = C23.449C24central stem extension (φ=1)64C2.4(C2^3:2Q8)128,1281
C2.5(C232Q8) = C24.584C23central stem extension (φ=1)64C2.5(C2^3:2Q8)128,1301
C2.6(C232Q8) = C24.355C23central stem extension (φ=1)64C2.6(C2^3:2Q8)128,1339
C2.7(C232Q8) = C23.508C24central stem extension (φ=1)64C2.7(C2^3:2Q8)128,1340
C2.8(C232Q8) = C245Q8central stem extension (φ=1)32C2.8(C2^3:2Q8)128,1358
C2.9(C232Q8) = C23.546C24central stem extension (φ=1)64C2.9(C2^3:2Q8)128,1378
C2.10(C232Q8) = C23.559C24central stem extension (φ=1)64C2.10(C2^3:2Q8)128,1391
C2.11(C232Q8) = C24.379C23central stem extension (φ=1)64C2.11(C2^3:2Q8)128,1397
C2.12(C232Q8) = C23.567C24central stem extension (φ=1)64C2.12(C2^3:2Q8)128,1399
C2.13(C232Q8) = C23.583C24central stem extension (φ=1)64C2.13(C2^3:2Q8)128,1415
C2.14(C232Q8) = C23.592C24central stem extension (φ=1)64C2.14(C2^3:2Q8)128,1424
C2.15(C232Q8) = C23.632C24central stem extension (φ=1)64C2.15(C2^3:2Q8)128,1464
C2.16(C232Q8) = C24.434C23central stem extension (φ=1)64C2.16(C2^3:2Q8)128,1480
C2.17(C232Q8) = C24.448C23central stem extension (φ=1)64C2.17(C2^3:2Q8)128,1512
C2.18(C232Q8) = C24.450C23central stem extension (φ=1)64C2.18(C2^3:2Q8)128,1516
C2.19(C232Q8) = C23.699C24central stem extension (φ=1)128C2.19(C2^3:2Q8)128,1531
C2.20(C232Q8) = C24.456C23central stem extension (φ=1)64C2.20(C2^3:2Q8)128,1536
C2.21(C232Q8) = C23.706C24central stem extension (φ=1)128C2.21(C2^3:2Q8)128,1538
C2.22(C232Q8) = C23.709C24central stem extension (φ=1)128C2.22(C2^3:2Q8)128,1541
C2.23(C232Q8) = C23.711C24central stem extension (φ=1)128C2.23(C2^3:2Q8)128,1543
C2.24(C232Q8) = C246Q8central stem extension (φ=1)32C2.24(C2^3:2Q8)128,1572
C2.25(C232Q8) = C23.741C24central stem extension (φ=1)64C2.25(C2^3:2Q8)128,1573
C2.26(C232Q8) = C24.15Q8central stem extension (φ=1)32C2.26(C2^3:2Q8)128,1574

׿
×
𝔽